A SMART of project workshop CAD RISK PREDICTION AND STRATIFICATION: THE ICT APPROACH

SMARTool clinical/molecular models

Nikolaos Tachos

Tuesday 6th November 2018

Horizon 2020 689068 CNR Research Area Campus Building A, Room 27 via Moruzzi, 1 Pisa - Italy

Aim

WP3, Task 3.4 Clinical/molecular ML models To design and develop a ML model integrating multiple categories of biological nonimaging data towards precise risk stratification in CAD

To identify the most informative features from genomics transcriptomics, inflammatory data, lipid profile

To validate the risk stratification model on retrospective and prospective data

SMART Pre-Imaging Module

SMARTool Pre-Imaging Module (PIM) Lab On Chip High probability RNA panel SMARTool data (most informative)* **Risk factors** Patient info PIM **Developed Machine** Biohumoral data PTP score algorithm Learning Model Exposome data Monocytes & inflammatory markers Developed Machine Learning Lipids Model 12/24 months **RNA** profile Developed Machine Learning Model Most informative ML after classifiers for CAD Low probability

State of the Art

Pre-test probability models of CAD based on Demographics, Risk Factors, Symptoms, ECG and conventional Biomarkers

STUDY	DATASET	METHODS	Acc. (%)	Sens. (%)	Spec. (%)
Anooj, 2012	The UCI Heart Disease Dataset CAD: $n = 165$, Normal: $n = 138$ Demographics, Risk Factors, ECG, Symptoms	Classification: Automated generation of weighted fuzzy rules - Mamdani fuzzy inference system Evaluation: Training-Test sets	62.4	44.7	76.6
Nahar et al., 2013	The UCI Heart Disease Dataset CAD: $n = 165$, Normal: $n = 138$ Demographics, Risk Factors, ECG, Symptoms	Feature Selection: CFS, Knowledge-based feature selection Classification: SVM Evaluation: 10-fold cross-validation	84.5	89.1	-
C. B. Fordyce, 2017	The PROMISE Minimal-Risk Tool CAD= 3388, Normal = 1243 Demographics, Risk Factors, Symptoms, HDL-C	Feature Selection: Knowledge-based feature selection Classification: multivariable logistic regression model Evaluation: Hosmer-Lemeshow calibration on validation set of 1544 pts	72.6		

State of the Art

Elashoff et al, BASED ON CATHGEN & PREDICT study

The **Corus CAD algorithm** was developed via a combination of microarray and RT-PCR gene expression data analysis, collected from age and sexmatched patients with symptoms suggestive of CAD.

The Corus CAD test incorporates **patient-specific gene expression**, **age**, and **sex data**.

- Feature Selection: <u>Unsupervised cluster analysis</u> and identification of meta-genes.
- Classification:
 - Age, sex, and gene expression are weighted and incorporated into the Corus CAD algorithm
 - Ridge linear regression.

Corus CAD demonstrated a high sensitivity 85% and negative predictive value 83%.

Dogan et al.,2018 BASED ON DNA AND SNP DATA

Based on the Framingham Heart Study Data

Training Set (n = 1545**) Test Set (**n = 142**)**

Dataset

Genome-wide DNA methylation and SNP data

Phenotype

Age, gender, systolic blood pressure (SBP), high-density lipoprotein (HDL) cholesterol level, total cholesterol level, hemoglobin A1C (HbA1c) level, self-reported smoking status, and the use of statins.

Model training and Testing

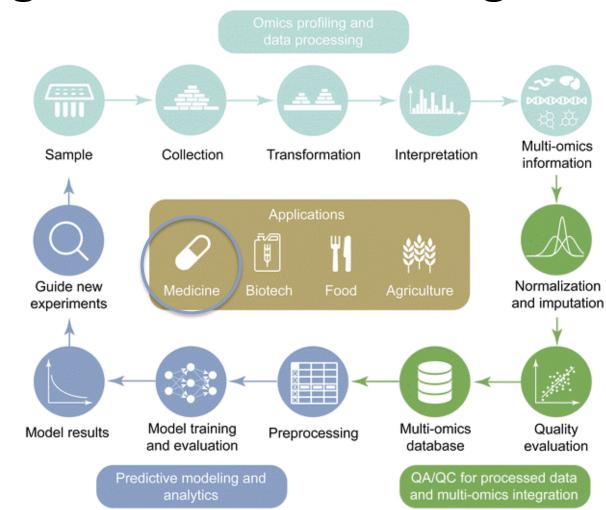
1. Eight Random Forest (RF) classification models were built on the eight sub-datasets using stratified 10-fold cross-validation.

	Acc.	Sens.	Sp.
Integrative model	77.5%	0.75	0.80
Conventional CHD risk factor model	65.4%	0.42	0.89

Predictive Modeling through Machine Learning

End-to-end pipeline of predictive analytics over multi-omics data

- 1. Data Acquisition
 - transformation, interpretation
- 2. Multi-omics Integration
 - normalization, imputation, quality control
 - integration within a single-omics type or across multi-omics-types
- 3. Predictive Modeling
 - feature selection, dimensionality reduction
 - unsupervised or supervised machine learning

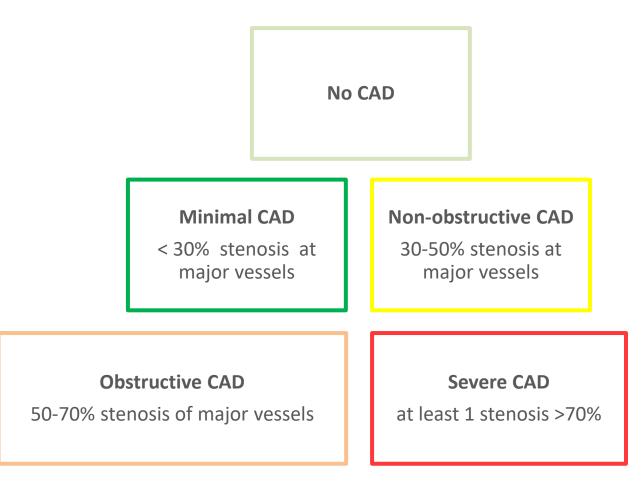


Kim, Minseung, and Ilias Tagkopoulos. "Data integration and predictive modeling methods for multi-omics datasets." *Molecular omics* 14.1 (2018): 8-25.

A SMARTeel project workshop CAD RISK PREDICTION AND STRATIFICATION: THE ICT APPROACH

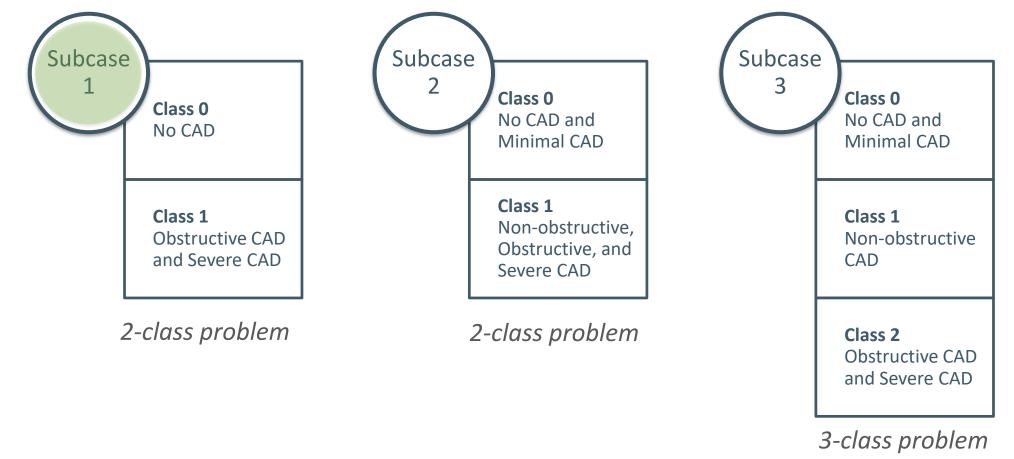
Problem formulation

- In the PIM module, the CAD risk stratification is formulated as a multiclass classification problem.
- ➤ The severity of the disease is represented as a nonlinear parametric function of a confined set of features f(x) = C_i, x = [x₁,...,x_d], i = 1,...k.
- Five dominant classes C_i, i = 1, ... 5 have been defined by the SMARTool experts based on stenosis severity, as assessed by computed tomography coronary angiography.



Problem formulation

DEFINITION OF SUBCASES



Coronary Artery Disease Risk Stratification

PROBLEM FORMULATION of subcase 1

The binary classification problem is addressed based on stenosis severity of major vessels, as assessed by computed tomography coronary angiography (CCTA).

- Class 0: Control subjects
- ◆ Class I: Obstructive CAD (≥50% stenosis at major vessels)

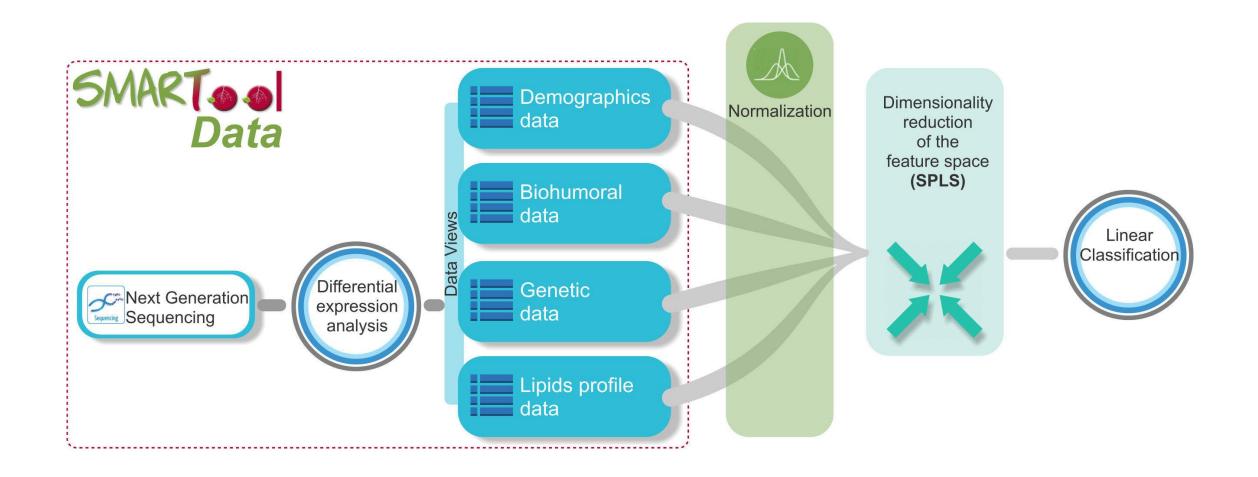
SMARTool dataset at follow-up

- The total number of annotated patients in follow-up with gene expression is 210pts
- The dataset is reduced to 87pts for subcase 1 problem
 - ✤ N=35 control subjects
 - ✤ N= 52 cases

Feature Set Description

Demographics	Age, Gender	
Risk Factors	Family History of CAD, Hypertension, Diabetes, Dyslipidaemia, Smoking, Obesity, Metabolic Syndrome	
Biohumoral data	Creatinine, Erythrocytes, Glucose, Fibrinogen, HCT, HDL, Haemoglobin, INR, LDL, Leukocytes, MCH, MCV, Platelets, Total Cholesterol, Triglycerides, Uric Acid, aPTT, Alanine Aminotransferase, AlkalinePhosphatase, Aspartate Aminotransferase, Gamma Glutamyl Transferase, High-Sensitivity C-Reactive Protein, Interleukin-6, Leptin	
Inflammatory and Monocyte Markers	ICAM1, VCAM1, CCR2, CCR5, CD11b, CD11b, CD14(++/+), CD14++/CD16+/CCR2+, CD14++/CD16-/CCR2+, CD14+/CD16++/CCR2-, CD163, CD16, CD18, CX3CR1, CXCR4, HLA-DR, MONOCYTE COUNT	
Omics Data	Gene Expression Data, Lipidomics	
Symptoms data	Typical Angina, Atypical Angina, Non Angina Chest Pain, Other Symp-toms, No Symptoms	
Exposome data	Alcohol Consumption, Vegetable Consumption, Physical Activity, Home Environment, Exposition to Pollutants	

SMARTool Machine Learning pipeline



Sparse PLS of demographics and gene expression data

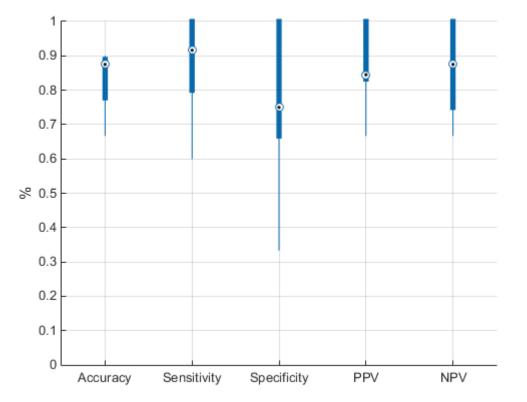
Evaluation Procedure: 10-fold cross validation accompanied by an internal 10-fold cross-validation for hyper-parameter tuning .

Performance Metrics

Accuracy	0.85±0.14
Sensitivity	0.90±0.14
Specificity	0.77±0.33
Positive Predictive Value	0.88±0.16
Negative Predictive Value	0.87±0.19

Confusion Matrix

		Predicted	
	Class 0 Class		Class I
Actual	Class 0	26	8
Act	Class I	6	46

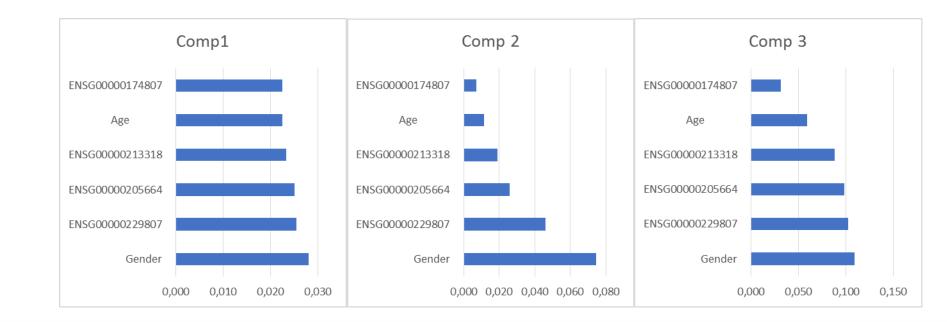


13

Sparse PLS of demographics and gene expression data

Evaluation Procedure: 10-fold cross validation accompanied by an internal 10-fold cross-validation for hyper-parameter tuning .

Selected variables in each of the 3 components (K = 3)



ENSG00000174807 ENSG00000205664 ENSG00000213318 ENSG00000229807 Age Gender

Logistic regression of demographics and biohumoral data

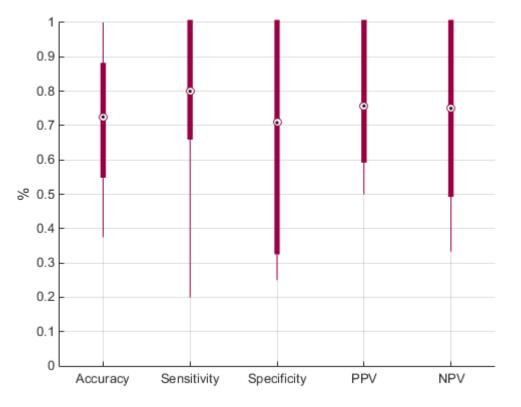
Evaluation Procedure: 10-fold cross validation accompanied by an internal 10-fold cross-validation for hyper-parameter tuning .

Performance Metrics

Accuracy	0.71±0.19
Sensitivity	0.77±0.24
Specificity	0.63±0.32
Positive Predictive Value	0.76±0.19
Negative Predictive Value	0.70±0.26

Confusion Matrix

		Predicted		
		Class 0	Class I	
Actual	Class 0	22	13	
Act	Class I	12	40	



Linear discriminant analysis (LDA) of demographics and biohumoral data

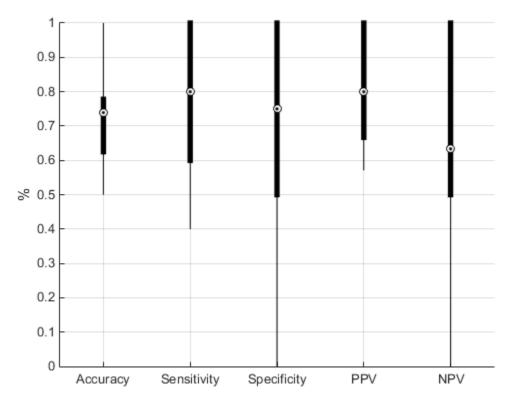
Evaluation Procedure: 10-fold cross validation accompanied by an internal 10-fold cross-validation for hyper-parameter tuning .

Performance Metrics

Accuracy	0.73±0.17
Sensitivity	0.77±0.20
Specificity	0.68±0.34
Positive Predictive Value	0.82±0.17
Negative Predictive Value	0.65±0.31

Confusion Matrix

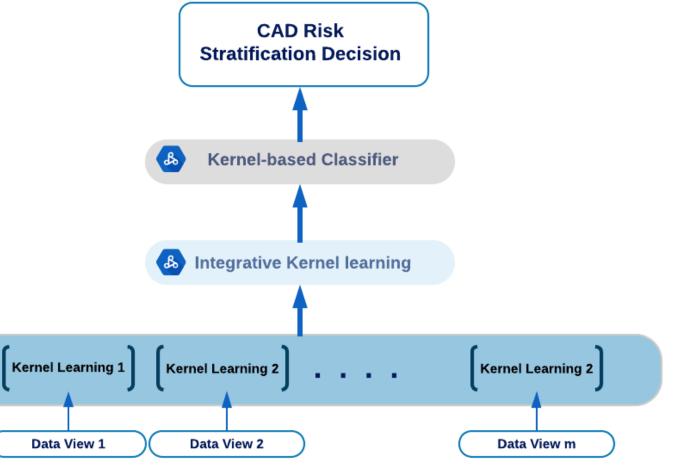
		Predicted		
		Class 0	Class I	
ctual	Class 0	24	11	
Act	Class I	12	40	



A SMARTeel project workshop CAD RISK PREDICTION AND STRATIFICATION: THE ICT APPROACH

FUTURE WORK: INTEGRATIVE MACHINE-LEARNING MODEL

- a purely nonlinear multi view approach, which is based on multiple kernel learning
- instead of <u>dimensionality reduction</u>, each data view is projected on a feature space of higher dimension



 ¹Y. Li, et al., Briefings in Bioinformatics, 2016
²D. Arneson, et al., Frontiers in Cardiovascular Medicine, 2017
³S. Min, et al., Briefings in Bioinformatics, 2017

CAD RISK PREDICTION AND STRATIFICATION: THE ICT APPROACH PIL

CONCLUSIONS

- A multimodal pipeline has been presented relying on sparse dimensionality reduction techniques and linear classification.
- The model can stratify patients with a high accuracy when demographics and genes are integrated using the SPLS framework.
- The feature set comprised of biohumoral and demographics data produces a lower classification performance.
- A higher-level integration of all data views requires a more sophisticated dimensionality reduction approach which is under development.
- Non-linear data integrative models are also examined for the definition of multiclass problems.